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We have implemented high-order NewtonCotes integration formulas through 16th order 
for use in the integral equation formulation of scattering theory. We have found that the high- 
order integration rules give high accuracy results with fewer grid points than low-order rules. 
Use of Newton-Cotes formulas beyond 16th order was prohibited by numerical instabilities. 
These formulas were applied to both a model integral and to the calculation of the 
photoionization of N, leading to the (2u,)-‘B*Zz and (3u,))‘X*Z: states of NT at a 
photon energy of 34eV. High-order rules were found to be unstable when applied to the 
integration of functions which rise as r2’+2 at high I in the partial wave expansions. An 
empirical formula is presented which predicts when high-order rules diverge as a function of I 
in a given integration region. Using a combination of high and low-order rules eliminated the 
divergence and still yielded accurate results in the N? photoionization calculations. Results for 
the photoionization of N, showed that Simpson’s rule is the most efficient Newton-Cotes 
formula for calculations in which the desired error was larger than 0.14%. For smaller errors, 
high-order integration rules are more efficient. cr‘l 1988 Academic Press. Inc 

I. INTRODUCTION 

One of the computational bottlenecks to applications of non-relativistic quantum 
scattering theory to problems in molecular physics is that of finding a numerical 
integration technique which is both accurate and efficient for the evaluation of 
integrals of the form 

I= (a I VW’7 B>, (1) 

where V is, in general, a non-local and non-spherically symmetrical interaction 
potential and G is a non-local Green’s function whose partial wave kernel is given 
by 

g,(r, r’) = 
{ 
s,(r) c,(r’) r < r’ 

cl(r) st(r’) r>r” 
(2) 

These integrals frequently occur in scattering theory, for example, in the use of 
variational functionals to compute scattering amplitudes [l-3], as well as in 
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discretization methods for solving the Lippmann-Schwinger equation [410]. 
The choie of integration method is complicated by the fact that the operator g,(r, r’) 
has a discontinuous derivative at r = r’. Methods of integration which do not 
adequately account for this discontinuity have poorly defined error estimates when 
such estimates depend on derivatives of the kernel [4]. 

Fraser [lo] originated the idea of using Newton-Cotes quadrature formulas to 
overcome the difficulty associated with the discontinuity in the slope of the kernel 
of integral equations which occur in the theory of atomic and molecular scattering. 
Although Fraser discussed the possible use of higher order formulas, he only used 
the trapezoid rule [lo]. The first use of higher order Newton-Cotes formulas in 
this class of integrals was the use of fourth-order formulas in the integration of the 
l/r,, potential by Burgess et al. [ 111. Note that the l/r,, potential is the Green’s 
function of the Laplacian and has a partial wave expansion of the form given in 
Eq. (2). Scattering equations have been solved using Newton-Cotes formulas of 
second order by Lucchese et al. [2] and of fourth order by Oza and Callaway [4]. 
Other approaches which adequately account for the discontinuity in the derivative 
include the use of integration formulas based on Chebyshev polynomials [6, 121, 
the Richardson extrapolation method [13], and the Rhomberg extrapolation 
method [3]. Methods based on the use of Gauss-Legendre quadratures, where the 
discontinuity is neglected, have also been used [9]. However, such methods have 
been shown [4, 51 to have convergence properties similar to those obtained using 
the trapezoid rule, which is the lowest order Newton-Cotes formula. 

In many applications to systems of current interest, the evaluation of the integral 
over the Green’s function takes significantly less time than computing the function 
over which the integrals are being taken. Thus, for a given level of accuracy, a more 
complicated integration procedure would be of great utility if it reduced the number 
of points at which the integrand must be evaluated. In large calculations of electron 
molecule scattering with several scattering channels, where much of the interchan- 
nel-coupling potential is long-range, and where angular effects arising from the non- 
spherical potential surface require that partial wave expansions be carried out to 
high I [ 141, grid optimization is especially useful. Matrix multiplication between 
potential operators and scattering basis functions, which are defined at each grid 
point and each 1, accounts for much of the computational effort in such 
calculations. Hence, savings in both computational effort and memory can be made 
by economic placement of grid points. 

In this paper we derive the Newton-Cotes integration formulas of order 1, 2, 4, 8, 
and 16. We first apply these formulas to a simple model integral which illustrates 
the rapid convergence of the high-order rules. The high-order integration formulas 
are then applied to the fixed-nuclei two-state coupled-channel calculation of’the 
photoionizaton of N, leading to the (20,) ~ ’ B’L’,+ and (30,) _ ’ X*.Z,’ states of N: . 
In this system, difficulties were discovered in treating integrands of high partial 
waves which are of the form r*‘+* for large 1 and small r. A simple algorithm was 
generated for determining the best order integration to use in each integration 
region based on the fact that the high-order integration rules converge best if the 
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ratio, r(last)/r(lirst), where r(last) and r(tirst) are the upper and lower endpoints of 
the integration region, respectively, remains below a certain constant value. When 
this ratio becomes larger than a certain threshold, the trapezoid rule becomes the 
best rule to use, and the higher order rules diverge more rapidly. The 8th-order 
integration rule was found to give the best convergence for integrations which 
include the origin, for which the ratio described above is undefined. Using the 
apporpirate integration rule for each 1 and integration region allowed us to avoid 
the divergence inherent in the high-order formulas. We found in the 
photoionization calculation on N, that Simpson’s rule took fewer points when the 
maximum allowable error was greater than 0.14%. When the maximum allowable 
error was less than 0.14%, the high-order-rule grids were more efficient than 
Simpson’s rule grids. The trapezoid rule was not found to be more useful than 
Simpson’s rule under any acceptable level of accuracy. The error associated with 
high-order-rule grids was empirically found to be proportional to (l/n)“.‘, while 
that of Simpson’s rule grids was proportional to (l/n)*,*, where n is the total 
number of points in the grid. 

II. INTEGRATION FORMULAS 

The two-dimensional integrals which we will evaluate using the Newton-Cotes 
formulas may be represented by 

I= s u(r) G( r, r’) u’(f) d3r d3r’. (3) 

When G(r, r’) is the Green’s function for a spherically symmetrical operator, the 
integral given in Eq. (3) can be written using a single center expansion of the 
form [2] 

I= f i sm dr’ r’*u;,(r’) Iorn dr r*u,,,,(r) g,(r, r’), 
,=Om=-, 0 

where g,(r, r’) is the kernel of the Green’s function of the form given in Eq. (2). In 
order to take into account the discontinuity in g,(r, r’), we evaluate the inner 
integral, 

f(r’)=jo’ udr) g,(r, r’) r* dr, (5) 

as a function of r’, splitting it along the discontinuity: 

fW = CO’) 1:’ udr) sdr) r* dr 

O” + s,(r’) s 
u&r) c,(r) r* dr. 

r’ 
(6) 
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The first integral in Eq. (6) is referred to as the “forward integral,” and the second 
integral the “backward integral” [4, 151. 

The task of numerical integration is thus reduced to the evaluation of the forward 
and backward integrals of Eq. (6). We divide the overall integration space, 0 to co, 
into several integration regions, each of which contains a number of grid points 
consistent with the integration rule used. The step size between grid points is con- 
stant within each integration region, but each region may have a unique step size. 
The grid is truncated at some Y,,, which is chosen large enough so that the trun- 
cation error is of an acceptable size. The number of grid points needed to evaluate 
an integral using the nth-order Newton-Cotes formula is n + 1. An integration rule 
may be used repetitively within an integration region, with common endpoints, so 
that the n th-order rule repeated m times requires nm + 1 points. We are able, then, 
to cover a region of 17 integration points with one 16th-order rule, two 8th-order 
rules, four 4th-order rules, or eight 2nd-order rules. Restricting ourselves to the use 
of these 4 integration rules allows for easy switching among rules. Examples of grids 
which use these integration rules in applications to the photoionization of N, are 
discussed in Section IV. 

The Newton-Cotes integration weights are derived from Lagrange’s interpolation 
formulas for equally spaced abscissa [ 161. For each of the n th-order rules, a unique 
set of n + 1 integration weights, W,[k, s], may be developed for evaluating the 
integral over each of the n sub-regions, x,, to x,, + hs, where S, the extent of the sub- 
region, ranges from 1 to n and where h is the step size between grid points. 
Integration weights for each sub-region are needed since r’, the point at which the 
integral in Eq. (6) is split, is not required to be at the boundaries of integration 
regions, but may be at any grid point, including those in the interior of an 
integration region. We may evaluate the integral, I:, of some function b, from x0 to 
x0 + hs as 

I; = 
I -~“+‘hh(x)dx=h~~h(xo+ph)9. (7) 

X0 

The value of the function, b(x), at any point, x = x,, +ph, is approximately given by 
the Lagrange interpolation formula, 

wo +ph) = i A!(p) 4x0 + kh), (8) 
k=O 

where A;(p) is given by [16] 

A;(p)=k!(n-k)!(p-k+n/2),=o 2 
(-1)” n p+n-f 

n( ) 
for even n, and 

(-l)k+’ n-t1 n+l -_ 
A;(p)=k!(n-k)!(p-k+(n-1),2) ,=* p+ 2 n( t > 

(10) 
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TABLE I 

Weights at Each Point: 2nd-Order Rule 

Points 
Integration 

range 0 1 2 
i 

oto 1 d 5 -h 
0 to 2 + f! f 

for odd n. Substituting the polynomial expression for b(x, +ph) given by Eq. (8) 
into Eq. (7) and integrating gives 

zyxh f b(x,+kh) W,[k,s-J, 
k=O 

(11) 

where the Newton-Cotes weights, W,,[k, s], are defined by 

(12) 

Using MACSYMA [ 171, we were able to evaluate Eq. (12) analytically, and 
compute the integration weights as rational fractions. Tables I-III give these coef- 
ficients for integration rules of order 2, 4, and 8. Note that the weights in Table II 
for the rule of order 4 are identical to those given by Burgess et al. [ll]. The 
weights in Table I are somewhat different from those given by Lucchese et al. [2]. 
The previously published second-order weights [2] have the advantage that they 
yield symmetric integrals (i.e., (crj VGV ID) = (/?I VGV [a)) whereas the present 
formulas do not yield symmetric integrals. However, both second-order formulas 
give similar rates of convergence. The coefficients are available upon request for the 
16th-order rule as well. Higher order rules are of little use since they have large 
integration weights (on the order of lo4 for the 32nd order) with oscillatory signs, 
giving rise to loss of accuracy on computers with fixed precision [18]. 

TABLE II 

Weights at Each Point for the 4th-Order Rule 

Points 

Integration 

Ei”& 0 I 2 3 4 
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TABLE III 

Weights at Each Point for the &h-Order Rule 

Points 
Integration 

range 0 1 2 3 4 5 6 7 8 

oto 1 1070017 2233547 -2302297 2797679 -31457 1573169 
3628800 1814400 1814400 1814400 22680 1814400 

0 to 2 32377 %?% -21247 5% ~ 2903 9341 
imm 56700 2835 in=73 

oto3 +2E& p&g +%I %E 
+gl g.g 

0 to 4 3% f% 2% 32752 - 1816 14175 2835 8% 

oto5 41705 115075 159175 145152 72576 3% 72576 -ia %% 

0 to 6 i%i 279 
ix 

i!G FE 78 333 
ii3 

0 to I 149527 408317 24353 542969 
518400 259200 259200 259200 

&%I 368039 
259200 

otoa i%% -3712 3% - 3632 
14175 2835 

- 645607 
-iimam 

- 15577 
56700 

-7031 
22400 

- 3965 
14175 

- 24575 
72576 

%I 

261023 
m 

-3712 
14175 

156437 - 33953 
1814400 Tt?zam 

is d-8 

35 ii% 

is fit% 

75% 5&i 

85 i& 

111587 -8183 
259200 Tim% 

f% is?% 

Odd orders of integration (e.g., 1, 3, 7, and 15) are used to compute the 
backward integral of Eq. (6) for the final integration region which contains the 
origin. We define our grids such that the first point is the first nonzero radial point 
[lo]. The forward integrand is always zero at the origin and thus there is no need 
to compute the integrand there. The backward integrand is not always zero at the 
origin in applications to scattering theory, however, the value of the backward 
integral is never needed at the origin. Thus, if the same integration rules were used 
for both backward and forward integrations at the origin, we would have to 
extrapolate the integrand to determine its value at the origin even though we would 
not need to evaluate the backward integration past the first grid point. Use of the 
odd order of integration rules (one order less than the even order of integration 
used in the forward integration of the same region) avoids the need to extrapolate 
the integrand to the origin. 

To illustrate the utility of high-order methods, we have applied integration rules 
of order 1, 2, 4, 8, and 16 to the integral given in Eq. (3) where we have used 

u(r)=u’(r)=(4n:)-1’2e-“’ (13) 

and we have used the free particle Green’s function which has an 1= 0 kernel given 
by 

go,O(ry r’ 1 = 
i 

(rr’))’ sin(kr) cos(kr’) r < r’ 

(rr’)-l cos(kr) sin(kr’) r > r’. 
(14) 

With these functions, the value of the integral given in Eq. (3) is then 

I= -k(fv+ x4+ 15/C’- 5) 
4(/v+ 1)4 . 

(15) 

581/77/Z-17 
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FIG. 1. Relative integration error as a function of step size for the integral defined by Eqs. (3), (13), 
and (14) for k = 8.0. The exact value of the integral is I = -(567158/17850625). The different integration 
orders are: p, the trapezoid rule; ., Simpson’s rule; ---, the &h-order rule; -.-, the 
Sth-order rule; __-___ , the 16th-order rule. 

In Fig. 1 we give the relative error in the integral as a function of the step size h for 
the live integration rules considered here for k = 8 and where the radial integrals 
were terminated at rmax = 40.96. Three features of the data presented in Fig. 1 
illustrate the advantages and limitations of the high-order Newton-Cotes 
integration formulas. The first feature is that the high-order methods converge more 
rapidly than low-order methods as h decreases. The second feature is that as h is 
increased the high-order integration methods diverge more rapidly than the low- 
order rules. Thus when applying high-order integration methods, one must be 
careful to choose the step sizes small enough so that the integrals are convergent. 
This point will be discussed in detail in Section III when we consider the integration 
of rapidly varying integrands. The third feature which is evident in Fig. 1 is that 
the maximum accuracy of the 16th-order integration is 1 part in 1014. These 
calculations were performed using double precision arithmetic on DEC VAX 1 l/780 
for which the real numbers a represented with a precision of 1 part in 1016. This loss 
of accuracy is due to the fact that the coefficients of the order 16 integration 
formulas have a maximum magnitude of -200 and have alternating signs. As 
mentioned above, integration rules of order greater than 16 have further restricted 
accuracies due to large and oscillatory integration weights. 

III. DIVERGENCE WITH INTEGRANDS OF THE FORM Y"+~ 

Although high-order Newton-Cotes integration schemes converge very quickly 
when applied to functions which vary slowly, some difficulty was encountered in 
applying these schemes to the Green’s function for high partial waves, where both 
the regular Green’s function, s,(r), and the wave function, D,,,,, rise as r’ near the 
origin, resulting in an integrand with an r dependence of the form, r2’+2. At high I’s, 



NEWTON-COTES INTEGRATION METHODS 531 

the high-order integration rules diverge because of the rapid rise in the function. 
For example, consider the use of the 16th-order rule to integrate over the sub- 
region between the 0th and 1st grid points of a 17-point region in which the integral 
is rising rapidly. While the last few grid points of this 17-point region have very 
small integration weights and should contribute very little to the value of the 
integral up to the 1st point, these final grid points add a divergently large quantity 
to the value of the integral. As discussed below, this difficulty can be overcome by 
selecting different integration rules for the same grid points based on the partial 
wave being integrated. 

An algorithm for choosing the rule which converges best in a given grid region 
was developed by studying the convergence of each integration rule as a function of 
A, the total exponent of r in the forward integrand (i.e., L = 2f+ 2). We conducted 
studies on the quadrature error in the evaluation of the integral 

(16) 

where we have taken 

f,(x)= 1. (17) 

We have defined fi+ l(a + hs) so that it will only differ from fi(a + hs) as a result of 
integration error, and we determine the integration error, E(n), by comparing 
f,(a + hs) with successive values of L.(a + hs) which are computed iteratively using 
the quadrature approximation 

fi+ *(a + As) = 
h(h+1) n 

(u + jsy+ 1_ ,,I+ I & Wntk sl.fifi(a + hk)(a + hkF, s = 1, . ..) n, 

(18) 

where h is the step size. We have computed fi(u + hs) up to i = 11 since functions of 
the form fil(x) occur in some of the matrix elements of the Pad& approximant 
method used in Section IV. Thus, we defined E(n) according to 

(19) 

At each order of integration, we compute E(n) for 1= 20, 30, 40, and 50, and for 
the ratios, 

a + hn 
R=- 

a ’ (20) 

at R = 1.25, 1.5, 2.0, 3.0, and 5.0. In comparing the different integration rules in 
Fig. 2, the step size was held constant for all integration orders, so that a ratio of 
5.0 for the 16th-order rule is compared to a ratio of 3.0 for the 8th-order rule, etc. 
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-lo 1 2 4 6 16 

lntegrution Order 

FIG. 2. Integration error, defined in Eq. (19) for A= 30, as a function of the order of integration for 
various ratios, R, defined in Eq. (20) for the 16th-order rule. 

Figure 2 shows the results for A = 30. For R = 1.25 and 1.5, E(16) <E(l), while for 
the other ratios, the order is inverted. There is, therefore, a value of R at which the 
convergence switches from preferring the 16th-order rule to the trapezoid rule for 
each value of A. The value of R at the switch point, R,(1), was determined by 
plotting log[E( 16)] - log[E( I)] versus R, and taking the value of R for which 

log(E(16))-log(E(l))=O. 

It was discovered that the plot of n defined as 

(21) 

(22) 

FIG.~. Integration error defined by Eq. (19) as a function of 1 for a region beginning with the origin: 
, the trapezoid rule; ., Simpson’s rule; ---, the rlth-order rule; -. -, the 8th-order 

rule; __-__ , the 16th-order rule. 
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versus l/I gives a straight line with a slope of 86.6 and an intercept of -3.30. This 
information allows us to determine whether the 16th-order rule or the trapezoid 
rule is best for a given R and Iz. While this eliminates the problem of divergent 
integrals, it does limit the use of the high-order integration formulas. 

A similar analysis was done for the special case of an integration region which 
begins with the origin, for which the ratio R is undefined. Figure 3 shows the errors 
found for the various integration orders as a function of ,I. The data illustrates the 
numerical instability in the 16th-order rule for regions which begin at the origin, 
We conclude that the optimal integration formula for use at the origin is the 
8th-order rule through ,I = 8, which corresponds to I= 3, and then for higher l’s, the 
trapezoid rule is less divergent. 

IV. APPLICATIONS TO THE PHOTOIONIZATION OF N, 

The fixed-nuclei two-state coupled-channel calculation of the photoinization 
leading to the (20,))’ B2C,f and (30,)-l X2Z;,+ states of N, was chosen to test the 
high-order Newton-Cotes methods since it is a case of current theoretical interest 
[ 11, and since the development of more optimized grids was a computational 
prerequisite for future work in this area. Tests were done on the 20, + ka, and 
30, + ka, contributions to the photoionization at a photon energy of 34 eV since 
effects of the channel coupling make the cross sections and asymmetry parameters 
at this energy very sensitive to small changes in the grid. The scattering equations 
were solved via the multichannel c-functional approach with Pad&approximant 
corrections [l-2, 19-221, where the variational functional was 

+ C (@,I rG,.V,G,V, l~>Wg-VQG.VQ)~‘(BI V,G,V, M”,L 
a$ 

(23) 
where V, is the Phillips-Kleinman pseudopotential [2, 231, r is the dipole 
operator, G,. is the matrix of channel Coulomb Green’s functions [ 11, and $; are 
the vectors of channel Coulomb waves [ 1,201. The rmax was taken to be 163.8 a.u. 

The grid on which the calculations were performed was chosen by a local 
optimization method. The first step in the optimization was to divide the radial 
integration into several regions based on the rate of change of the occupied orbitals 
and their derivatives. Note that the target wave function of N, was constructed 
from linear combinations of Gaussian functions centered at the nuclei. Thus at the 
radius which corresponds to the position of the nuclei the orbitals are very rapidly 
changing, which in turn means that the grid step size must be small near the nuclei. 
In each region the step size is chosen to converge a test integral of the type used in 
the actual calculation to within a specified tolerance. We computed three different 
types of grids. The first grid was composed of all first-order, i.e., trapezoid, rules 
and the second was composed of all second-order, i.e., Simpson’s, rules. For the 
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third type of grid, the optimizatin procedure also considered different rules for a 
particular region and chose the most efficient rule in addition to the appropriate 
step size. This optimization procedure did not necessarily produce the globally 
optimum grid but could only give a grid which was locally optimum in each 
integration region considered. The most accurate grid containing high-order 
integration rules obtained from the optimization procedure is given in Table IV. To 
obtain a standard result by which the accuracy of all of the optimized grids were 
judged, the density of points of the high accuracy grid given in Table IV was 
doubled to yield a grid of 2120 points. For each grid the photoionization of N, was 
calculated yielding 8 cross sections, 4 from each channel, the length and velocity 
forms [14] of the asymmetry parameter and the length and velocity forms of the 
cross section. An overall error for each calculation was computed as the root-mean- 
square of the deviations of these 8 results in comparison with the corresponding 
standard result obtained from the grid with 2120 points. A log-log plot of the RMS 
deviation as a function of the number of grid points was found to be approximately 
linear as shown in Fig. 4. 

The slope of the line for the high-order grids was found to be - 11.2 + 0.6, while 
the Simpson’s rule slope was found to be -2.7 & 0.3, and the trapezoid rule slope 
was - 1.7 + 1.0. This demonstrates that even in a full calculation with the difficulties 
mentioned above, the high-order rules converge much faster than low-order rules. 
The high-order grids and the Simpson’s rule grids cross at an RMS deviation of 
0.0014. Calculations in which the required accuracy is less than this may be accom- 
plished more elliciently with use of the Simpson’s type grid. The flexibility of the 
Simpson’s rule is thought to enable it to perform better than the high-order rules at 
low accuracies. Step sizes may be changed more often in a rule which is defined by 
only 3 points, so that the step size remains optimal. In the high-order-rule grids, 

TABLE IV 

Optimized High-Order Grid Containing 1060 Points’ 

Region Points Order Step size End (ax) 

1 88 8 0.0106 0.929 
2 16 8 0.0043 0.998 
3 24 4 0.0015 1.034 
4 20 4 0.0018 1.070 
5 16 16 0.0057 1.161 
6 16 16 0.0160 1.417 
7 16 16 0.0359 1.991 
8 16 16 0.0567 2.898 
9 16 16 0.0822 4.214 

10 32 16 0.0987 7.370 
11 16 16 0.1184 9.265 
12 624 16 0.1994 133.691 
13 160 16 0.1882 163.800 

a Note that the nucleus in N, is at r = 1.034 a.u. 
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FIG. 4. Root-mean-square deviation in the asymmetry parameters and cross sections of the 
20, -+/or, and 3a, -+ ka, contributions to the photoionization of N, as a function of the number of grid 
points for the high-order rules, Simpson’s rule, and the trapezoid rule, at a photon energy of 34 eV. 

points are added inefficiently to the grids simply because they are needed to define 
the integration. 

The trapezoid rule was found to be inferior to both the Simpson’s rule and higher 
order rules. This conclusion is consistent with that of previous studies [4-51 in 
reiterating that the trapezoid rule, and by extension the Gauss-Legendre 
quadratures, are not efficient in comparison with higher order Newton-Cotes 
integration formulas. 

V. CONCLUSIONS 

We have shown that at low accuracies Simpson’s rule is efficient in providing 
integrals of Green’s functions which have kernels with discontinuous first 
derivatives. We have also shown that the high-order Newton-Cotes formulas may 
be implemented to provide rapid convergence to a high degree of accuracy. The 
availability of accurate integration methods will have at least two important 
applications in studies of electron-molecule scattering such as the study of the 
photoioniation of N2. First, in variational methods [l-3], basis sets which are 
nearly linearly dependent lead to numerically unstable results with low accuracy 
integration methods, but should give stable results with high accuramcy methods. 
And second, the availability of accurate results allows one to determine absolute 
errors in less accurate but smaller grids which can then be used to efficiently 
compute the needed cross sections at an acceptable level of accuracy. 
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